Steric hindrance in the upper 50 kDa domain of the motor Myo2p leads to cytokinesis defects in fission yeast
نویسندگان
چکیده
Cytokinesis in many eukaryotes requires a contractile actomyosin ring that is placed at the division site. In fission yeast, which is an attractive organism for the study of cytokinesis, actomyosin ring assembly and contraction requires the myosin II heavy chain Myo2p. Although myo2-E1, a temperature-sensitive mutant defective in the upper 50 kDa domain of Myo2p, has been studied extensively, the molecular basis of the cytokinesis defect is not understood. Here, we isolate myo2-E1-Sup2, an intragenic suppressor that contains the original mutation in myo2-E1 (G345R) and a second mutation in the upper 50 kDa domain (Y297C). Unlike myo2-E1-Sup1, a previously characterized myo2-E1 suppressor, myo2-E1-Sup2 reverses actomyosin ring contraction defects in vitro and in vivo Structural analysis of available myosin motor domain conformations suggests that a steric clash in myo2-E1, which is caused by the replacement of a glycine with a bulky arginine, is relieved in myo2-E1-Sup2 by mutation of a tyrosine to a smaller cysteine. Our work provides insight into the function of the upper 50 kDa domain of Myo2p, informs a molecular basis for the cytokinesis defect in myo2-E1, and may be relevant to the understanding of certain cardiomyopathies.
منابع مشابه
Cytokinesis depends on the motor domains of myosin-II in fission yeast but not in budding yeast.
Budding yeast possesses one myosin-II, Myo1p, whereas fission yeast has two, Myo2p and Myp2p, all of which contribute to cytokinesis. We find that chimeras consisting of Myo2p or Myp2p motor domains fused to the tail of Myo1p are fully functional in supporting budding yeast cytokinesis. Remarkably, the tail alone of budding yeast Myo1p localizes to the contractile ring, supporting both its cons...
متن کاملTropomyosin and Myosin-II Cellular Levels Promote Actomyosin Ring Assembly in Fission Yeast
Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, ...
متن کاملRegulation of fission yeast myosin-II function and contractile ring dynamics by regulatory light-chain and heavy-chain phosphorylation.
We investigated the role of regulatory light-chain (Rlc1p) and heavy-chain phosphorylation in controlling fission yeast myosin-II (Myo2p) motor activity and function during cytokinesis. Phosphorylation of Rlc1p leads to a fourfold increase in Myo2p's in vitro motility rate, which ensures effective contractile ring constriction and function. Surprisingly, unlike with smooth muscle and nonmuscle ...
متن کاملFission yeast myosin-II isoforms assemble into contractile rings at distinct times during mitosis
Myosin-II is required for cytokinesis in Schizosaccharomyces pombe [1-3], but unlike other unicellular organisms, S. pombe has two structurally distinct myosin-IIs, Myo2p and Myp2p, which are required under different conditions [4]. Disruption of myo2(+) is lethal, whereas disruption of myp2(+) leads to defects in cytokinesis when nutrients are limiting and to cold-sensitivity in 1 M KCl. In di...
متن کاملUCS protein Rng3p activates actin filament gliding by fission yeast myosin-II
We purified native Myo2p/Cdc4p/Rlc1p (Myo2), the myosin-II motor required for cytokinesis by Schizosaccharomyces pombe. The Myo2p heavy chain associates with two light chains, Cdc4p and Rlc1p. Although crude Myo2 supported gliding motility of actin filaments in vitro, purified Myo2 lacked this activity in spite of retaining full Ca-ATPase activity and partial actin-activated Mg-ATPase activity....
متن کامل